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FIG. 8. Reflection of an acoustic wave at a shock front. (al 
Time-distance plane. Reflection from shock front at A. (hl 
Corresponding pressure-particle velocity plane. Numbered 
states correspond to those at part (al. H is Hugoniot curve, 
S· and S· are characteristic curves. 

1 is the initial shocked state; the state behind the inci­
dent acoustic wave, assumed to be a compressional 
wave, is state 2; and the state behind the reflected 
acoustic wave is state 3. 

The amplitudes of the acoustic waves are assumed to 
be small; consequently, we retain only first-order 
terms, and, 

P3-P1=(dP/ du)H(U3-Ul)+'" , 

P2 - P1 = (j/M)(U2 - u 1) + ••• , 

P3 -P2 = (- j/M)(u3 - U2) + ••• , 

where Eq. (13) has been employed. Eliminating the ve­
locities among these equations yields, 

u3 -u1 - (Ug -U2) - (U2 -Ul) 

(
dU) M M = dP /Pg-Pl)+j(P3-P2)-j(P2-Pl)=0. 

Or, in obvious notation, 

&_ M - j(du/dP)H 
P21 - M +j(du/ dP)H ' 

(18) 

is the ratio of amplitudes of the reflected and incident 
acoustic waves. 

As noted the subsonic condition requires 

O< M < l; j(du/dP)H < l, 

and this condition clearly must be satisfied in order that 
a reflection occur at all. Let us first, therefore, con­
sider a portion of the range within the limits of Ineq. 
(17), namely, 

-1 <f l(dV/ dP)H <f 1, (19) 
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or, from Eq. (10), 

o <f j(du/dP)H <f 1 . 

From Eqs. (18) and (20) we deduce, 

O<f j(dU) =M(1-P32/ P21 ) <f 1 
dP H 1 +P32/P21 

This gives 

M -1 P'2 - 1 <f --<f -""- <f 1 
M +1 P21 ' 

(20) 

(21) 

as the only solution. Within the restrictions specified 
by Ineq. (19) or (20), therefore, the absolute magnitude 
of the amplitude of the reflected acoustic wave is not 
greater than that of the incident wave. 

The remainder of the region limited by Ineq. (17) is, 

1 <l(dV /dP)H < 1 + 2M • 

Using Eq. (10) this can be written 

-M <j(du/dP)H < O, 

whence, we deduce from Eq. (18), 

1 < P 32/ P21 • 

(22) 

We conclude that amplification of acoustic wave am­
plitudes occurs in the region specified by Ineq. (22). 
This is just the region for which multi-valued solutions 
to the impact problem are admitted by Ineq. (17), and 
this suggests that shocks in this region are at least con­
ditionally unstable. 

It has been shown earlier that an oscillatory type of 
instability can occur under these circumstances. 6 

Thus, for example, consider the special case illus­
trated in Figs. 9 and 10. A shock to state 1 is per­
turbed by applying a pressure increment at the bound­
ary, x = 0, at time tl> and the pressure at the boundary 
is then held at its new value P 2 , indefinitely. This per­
turbation is transmitted into the shocked region along a 
C+ characteristic and undergoes successive reflections 

I 

SHOCK 
FRONT 

Pz PI X 

FIG. 9. Time-distance plane showing shock wave and acoustic 
interactions. Boundary x = 0 is perturbed at time tt by impos­
ing constant pressure increment, P 2 - Pt. Forward and back­
ward facing acoustic waves are labeled C' and Co. Motion of 
boundary, x = 0, and variations in shock velocity neglected. 
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FIG. 10. (a) Pressure, particle velocity plane corresponding 
to Fig. 9. Numbered states represent P-u states of Fig. 9. 
Hugoniot, H, has negative slope. Characteristics (isentropes) 
are labeled S· and S-. (h) Same as Fig. 10(a) except Hugoniot 
has positive slope. 

at the shock front and at the boundary, producing the 
states labeled 3,4--- . Figure 10 is the associated 
pressure, particle velocity plane with the numbered 
states corresponding to those of Fig. 9. The Hugoniot 
of the material is labeled H and the r characteristics, 
or isentropes, by S· and S-. 

The Hugoniot in Fig. 10(a) is assumed to have nega-

p 

u 
FIG. 11. Similar interaction as shown in Figs. 9 and 10 ex­
cept perturbation at boundary is in particle velocity. U2 - Ut 

=const. 
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FIG. 12. (a) Similar diagram to that of Fig. 9 except boundary 
condition is determined by properties of impactor material to 
left of boundary. (b) Pressure, particle velocity plane corre­
sponding to Fig. 12(a). 

tive slope and, as a result, the successive reflections 
form a kind of divergent spiral about the original state, 
1. Conversely, it can easily be seen that when the 
Hugoniot has a positive slope, the spiral is convergent 
and the state asymptotically approaches a new Hugoniot 
state atP2 as in Fig. 10(b). 

Another special case is one in which the perturbation 
is assumed to be an increment in particle velocity, U2 

- Ul' as shown in Fig. 11. When the slope of the Hugo­
niot is negative, the successive acoustic reflections 
again grow in amplitude with time as illustrated. 

The diagrams of Figs. 9-11 have been Simplified in 
an important respect. Each time an acoustic interac­
tion occurs at the shock front a contact discontinuity is 
produced, as indicated by the dashed lines in Fig. 9. 
These present contrasts in acoustic impedance to the 
acoustic waves with the result that additional internal 
reflections occur, complicating the process. We know 
no simple method for treating these internal reflections 
analytically, but note that they have the ultimate effect 
of increaSing the entropy of the shocked region. 

Both of the cases illustrated in Figs. 10 and 11 have a 
common feature: no acoustic energy is transmitted 
across the boundary at x = O. If we consider a more· 
general case in which the shock is produced by impact 
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